Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Researchers Developed a Test Bed For Separating Valuable Material on the Moon

% of readers think this story is Fact. Add your two cents.


Many times, it’s better to flesh out technologies fully on Earth’s surface before they’re used in space. That is doubly true if that technology is part of the critical infrastructure keeping astronauts alive on the Moon. Since that infrastructure will undoubtedly use in-situ resources – known as in-situ resource utilization (ISRU) – developing test beds here on Earth for those ISRU processes is critical to derisking the technologies before they’re used on a mission. That’s the plan with a test bed designed by researchers at the German Aerospace Center in Bremen – they designed it to improve how well we gather water and oxygen from lunar regolith. Unfortunately, as their work described in a recent paper demonstrates, it will be a challenge to do so.

Water and oxygen are two critical components of any long-term lunar exploration plan. One of the best sources for that on the Moon, other than water ice that might only be available at specific locations, is a mineral called ilmenite. Ilmenite is a combination of iron, titanium, and oxygen—FeTiO3. It’s also the most accessible material to split into its parts using a relatively low-energy chemical reaction with elemental hydrogen as a feedstock. 

After reducing ilmenite with hydrogen, the resulting elements are iron (useful for building materials), titanium dioxide (useful for optical coatings), and water (useful for plenty of things). A further step could reduce the water to oxygen (again, useful for many things, including breathing) and hydrogen, which can be recycled back into the feedstock system for the following processing round. So, in the end, if you have ilmenite, you have access to cheap building materials, rocket fuel, and gas for breathing.

Ilmenite is also mined here on Earth – here’s a model beneficiation plant.
Credit – Christian George

Unfortunately, ilmenite is not particularly common on the lunar surface. While it is somewhat plentiful in the mare regions, it is much less so in the highlands where the first permanent lunar outposts are planned. So, explorers will need a technological solution to find more ilmenite – or at least concentrate it to levels where subjecting it to the reduction process would be energy efficient.

That’s where beneficiation comes in. It is the process of separating valuable materials, such as ilmenite, from the “chaff” that makes up most of the lunar regolith – the most easily accessible resource on the Moon. Given a lack of readily available lunar regolith, the researchers used a regolith simulant when putting their test bed through its paces. That testbed consists of three machines for three main processes: gravitational, magnetic, and electrostatic beneficiation, and the paper goes into detail about each of them.

Before any testing, the regolith simulants were dried for upwards of 48 hours at a temperature of 80 C. Afterwards, they were stored in a sealed container to prevent any additional moisture from entering the system.

Fraser talks about in-situ resource utilization – mining and beneficiating ilmenite is one way of doing so

The gravitational process uses a feeder, which is fed 300g of dried simulant for every test run, and a sieve, which separates particles that are more than 200 micrometers in size. Studies from samples collected by Apollo astronauts showed that most ilmenite grains ranged from about 45-75 micrometers, so most of the ilmenite should make it past this stage. At the same time, larger particles that could hinder the performance of the rest of the system are weeded out.

Next up is the magnetic separator – ilmenite is weakly magnetic due to its iron content and, as such, can be separated from non-magnetic material of a similar density by subjecting it to a magnetic field. The magnetic field is directed such that it would push the particles of ilmenite out of a straight line when falling, directing them into a different hopper. Non-magnetic materials of a similar size would fall directly down and be filtered out by the system.

Finally, the remaining magnetic particles are subjected to massive electric fields using an electrostatic parallel plate separator. Typically used in the oil and gas industry, these devices introduce a gigantic electric field that suspends some particles, slowing their descent and making it possible to sort out materials with specific electrical properties. Characterizing the most effective way to utilize this step was a major focal point of the study.

Isaac Arthur discusses how to mine and refine lunar resources.
Credit – Isaac Arthur YouTube Channel

After all that sifting and sorting, ideally, the users would end up with all the ilmenite in the sample and nothing else, but that doesn’t happen in practice. Realistically, some of the ilmenite present in the sample would be lost as part of the filtering process, and some non-ilmenite particles make their way to the final collection point despite all the various methods to get rid of them. 

In this experiment, the final mixture was about 12% ilmenite by weight, compared to 2.55% before it was beneficiated. The system also recovered around 32% of the total ilmenite available in the sample, and it took about half an hour to run a full 300g sample through the test bed. Further iterations could improve all those numbers – that is what test beds are for. This is only one of numerous steps that have to happen to finally make use of some of the more valuable resources on the Moon. The quicker we’re able to, the better.

Learn More:
Kulkarni et al. – Optimizing lunar regolith beneficiation for ilmenite enrichment
UT – Mysterious Swirls on the Moon Could Be Explained by Underground Magma
UT – Want to Build Structures on the Moon? Just Blast the Regolith With Microwaves
UT – It Should be Possible to Farm on the Moon

Lead Image:
Image of the test bed machine.
Credit – Kulkarni et al.

The post Researchers Developed a Test Bed For Separating Valuable Material on the Moon appeared first on Universe Today.


Source: https://www.universetoday.com/168121/researchers-developed-a-test-bed-for-separating-valuable-material-on-the-moon/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.


Humic & Fulvic Liquid Trace Mineral Complex


HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary new Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula.


This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting.


Order Your Humic Fulvic for Your Family by Clicking on this Link, or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.