Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Universe Today (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Neutron Star Mergers Could Be Producing Quark Matter

% of readers think this story is Fact. Add your two cents.


When neutron stars dance together, the grand smash finale they experience might create the densest known form of matter known in the Universe. It’s called “quark matter, ” a highly weird combo of liberated quarks and gluons. It’s unclear if the stuff existed in their cores before the end of their dance. However, in the wild aftermath a neutron-star merger, the strange conditions could free quarks and gluons from protons and neutrons. That lets them move around freely in the aftermath. So, researchers want to know how freely they move and what conditions might impede their motion (or flow).

These weird stars are hugely dense and strange collections of neutrons. So, when two of them dance and merge, they change shape under the pressure of the merger. They also heat up. The conditions eventually change the states of matter in their cores. According to Professor Aleksi Vuorinen of the University of Helsinki, Finland, this is what astronomers think happens during neutron star mergers. However, he points out nobody completely understands those conditions and how quarks behave in them. “Describing neutron-star mergers is particularly challenging for theorists because all conventional theoretical tools seem to break down in one way or another in these time-dependent and truly extreme systems”, he said.

How Neutron Star Collisions Involve Quarks

Crab Nebula by JWST. The resulting neutron star at its heart spins rapidly and sends out a signal. That makes it a pulsar. Credit: NASA, ESA, CSA, STScI, T. Temim (Princeton University)
Crab Nebula by JWST. The resulting neutron star at its heart spins rapidly and sends out a signal. That makes it a pulsar. Credit: NASA, ESA, CSA, STScI, T. Temim (Princeton University)

In the cosmic zoo, neutron stars are among the weirder denizens. They’re the highly magnetized leftovers of old supermassive stars that died in supernova explosions. The catastrophic collapse of the dying star creates a solid ball of neutrons where the stellar core once existed. Some spin very rapidly and send signals out to space. The Crab Nebula pulsar is a good example of such an object. Its core spins some 30 times per second and its signal shows up as regular pulses in radio frequencies, gamma and x-ray wavelengths. That’s why it’s called a “pulsar”.

When neutron stars merge, obviously they mix and mingle their contents. Researchers want to know the viscosity of the material created in the merger. Essentially, this would be a measure of how strongly particle interactions would resist flowing. Or, think of it as measuring how “sticky” the flow of the quark soup would be. A thick quark soup would flow more slowly while a thin one would move faster. The idea is to understand the conditions and what they do to affect the flow of quarks during a merger.

Theories about Sticky Quarks

Researchers want to define the so-called “bulk viscosity” of the material created during the neutron star merger. Essentially, bulk viscosity describes the energy loss as the system involved in the merger experiences radial oscillations. They show how the quark-gluon density changes in a regular, periodic way. Vuornin and colleagues set out to determine the bulk viscosity of the quark matter involved in such a collision. They studied the problem using two theoretical methods, one invoking principles of holography and the other on a quantum field study called perturbation theory.

Illustration of a quark core in a neutron star. Credit: Jyrki Hokkanen, CSC - IT Center for Science
Illustration of a quark core in a neutron star. Credit: Jyrki Hokkanen, CSC – IT Center for Science

Essentially, the holographic approach looks at the quark matter problem as a factor of the densities and temperatures that occur during neutron star collisions. The team is interested in something called “quantum chromodynamics.” That’s the study of interactions between the quarks and gluons in the material created by the collision.

The perturbation theory looks at the strength of the interactions between those particles. By applying both methods, the team was able to characterize the bulk viscosity, i.e. the “stickiness” of the quark matter. Then, they could figure out that its stickiness occurs at lower-than-expected temperatures. It’s a big step forward in understanding the behavior of neutron star matter during mergers. “These results may also aid the interpretation of future observations. We might for example look for viscous effects in future gravitational-wave data, and their absence could reveal the creation of quark matter in neutron-star mergers,” adds University Lecturer Niko Jokela.

A simulation of two dense neutron stars colliding. In some cases, a larger neutron star results; sometimes a black hole is created. Courtesy: A. Tchekhovskoy, R. Fernandez, D. Kasen
A simulation of two dense neutron stars colliding. In some cases, a larger neutron star results; sometimes a black hole is created. Courtesy: A. Tchekhovskoy, R. Fernandez, D. Kasen

Using Physics and Quantum Theory to Delve into a Neutron Star

No one has ever been inside the strange universe inside the neutron star. However, it’s got to be one of the weirder places in the cosmos. As mentioned, they’re made simply of neutrons—combos of protons and electrons. Unlike most stars, they don’t radiate heat and whatever residual heat they do contain dissipates over time. These odd objects do have extremely strong magnetic fields.

Neutron stars are incredibly dense. Just a small amount of their material (about the size of a regular wallet) would weigh around 3 billion tons. That makes these odd stars the second-most dense objects in the Universe, after supermassive black holes. Astronomers and particle physicists are interested in them because they can offer insight into such topics as superconductivity, the behavior of dense fluids, and a topic called quantum chromodynamics. Studying the collisions of these superdense objects also offers insight into the growth of these objects after their original formation in catastrophic supernova explosions.

For More Information

Neutron-Star Mergers Illuminate the Mysteries of Quark Matter
Estimate for the Bulk Viscosity of Strongly Coupled Quark Matter Using Perturbative QCD and Holography
Quantum Chromodynamics

The post Neutron Star Mergers Could Be Producing Quark Matter appeared first on Universe Today.


Source: https://www.universetoday.com/168203/neutron-star-mergers-could-be-producing-quark-matter/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.


Humic & Fulvic Liquid Trace Mineral Complex


HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary new Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula.


This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting.


Order Your Humic Fulvic for Your Family by Clicking on this Link, or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.