Is it possible to measure cognitive entanglement negentropy somehow?
The discussion with Ville-Einari Saari and DeepSeek inspired the previous blog post related to the measurement of entanglement negentropy as a measure for the level of cognitive consciousness. In the following I try to articulate the basic ideas more precisely.
Entanglement negentropy as a measure of conscious information is not the negative of the ordinary entanglement entropy but sum over p-adic contributions obeying however the same kind of formula as the Shannon entropy. For a given p-adic prime p, the logarithms of probabilities are replaced by integer value p-based logarithms of their p-adic norms. This requires that the entanglement probabilities are rationals or belong to the extension of rationals.
Assume that the entanglement probabilities are measured somehow. The problem is that they cannot be known with an infinite precision and the approximation as a rational number can lead to very different outcomes for the negentropy. For instance, multiplying the probabilities with a rational r=m/n very near to unity such that m and n are very large integers, can change the sum of the p-based logarithms dramatically. The reason is that real and p-adic topologies are very different. The power pn for large n approaches zero in p-adic sense but to infinity in real sense.
Measurement of the amount of conscious information is in question and it is not surprising if problems emerge if one starts from real numbers which are essentially measures for magnitude: consciousness cannot be weighed.
The first question is of course whether cognitive entanglement negentropy is useful in any way? This seems to be the case. If one takes the number theoretical physics predicted by TGD as a correlate for cognitive consciousness seriously, one can see the effects due to the reduction of negentropy at a qualitative level. In absence of metabolic energy feed needed to increase the values of h to heff, heff spontaneously decreases and the negentropic resources are reduced. The level of consciousness is reduced and the system gets tired or even loses consciousness. This can be seen as a direct qualitative support for the notion if subjective existence is accepted as something real.
What is clear is that if the cognitive measurement problem can be solved it must be carried out in the number theoretic framework. At least to me this means that notions like field body, zero energy ontology, and number theoretic physics are taken seriously. For the sake of simplicity, consider in the sequel rational probabilities. One can also consider the possibility that the probabilities are always rational: this would conform with the way how they are estimated experimentally, at least in real number based physics by repeated measurements.
- As far as the approximation as rationals is considered, only the p-based logarithms appearing in the expression of negentropy are problematic. The integer of the lowest power of p is sensitive to the approximation as a rational. Could some additional physically motivated assumptions allow to eliminate this sensitivity? And could one restrict the number of primes involved?
- Suppose you have somewhat measured approximate values for the probabilities as rational numbers by performing measurements for a cognitive ensemble. The estimates for the probabilities Pk= mk/nk are rational. The integers in mk and nk can be developed to powers series in powers for a given prime pi and the integer exponent of the lowest power of pi determines the norm of mk and nk.
If the actual probabilities Pk are rational numbers Pk=mk/N, only a finite number of p-adic primes matter since the p-adic norms of numerator and denominator of r= m/n are equal to 1 for large primes and p-based logarithm vanishes. One should be able to identify for a given probability reliably the prime, which appears as the lowest power in the expansion. Consider an actual cognitive measurement (whatever it could mean!).
- The assumption that the experimenter can control the total number N of measurements looks unrealistic since cognitive entanglement is in question so that standard kind of measurement is simply impossible. It is not possible to put the mind on a scale.
- The assumption that a measurement in the standard sense is possible indeed leads to problems. For the actual measurement nk would correspond to the total number N of measurements so that one has Pk= mk/N. The problem is that the prime decomposition of N is highly sensitive to its value and changes dramatically in N→ N+1.
- The only way to get rid of this sensitivity is to assume that N is not under the control of experiment and the probabilities are deduced in some other way than by performing a measurement for a cognitive ensemble.
- Could time series of measurement, whose duration cannot be controlled by the observer be considered. Could the number of loci of non-determinism for the Bohr orbit somehow determine the number N of cognitive measurements? If so, the geometric duration of the Bohr orbit would determine the value of N and the probabilities Pk.
p-Adic length scale hypothesis for which the holography = holomorphy vision leading to a generalization of p-adic number fields to their functional counters suggests that favored values for N are primes or prime powers. Could the assumptions about the measured cognitive system help?
- The number of p-adic primes associated with mk and nk in Pk=mk/nk are finite and they have a decomposition to a finite number of primes pi. A reasonable assumption is that the integers mk and nk can be taken to be as small as possible. This conforms with the frequency interpretation of Pk. This would help to make the approximation as rationals more unique and for instance multiplication by a rational, which is a ratio of very large integers and near to unity is not allowed.
- I have proposed the notion of multi-p p-adicity (see this and this) motivated by the need to define interaction vertices for particles characterized by different p-adic primes. Multi-p p-adicity would be related to the world of the “classical worlds” (WCW) expected to have a spin glass type structure having a decomposition to regions with ultrametric topology characterized by a p-adic primes.
In the interfaces of the regions of WCW with different values of p-adic prime p, multi-p p-adicity would prevail and mean that the integers involved have expansion in powers of integer n: the primes pi dividing n would define p-adic primes pi associated with the multi-p p-adicity. This assumption would give very strong constraints on the p-adic expansion of probabilities and the lowest power for each pi could be highly unique for the integers mk and np in Pk= mk/nk. The assumption that the integers mk and nk have expansion in powers of the same integer n would make the rational approximation highly unique.
For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.
Source: https://matpitka.blogspot.com/2025/12/is-it-possible-to-measure-cognitive.html
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

